wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the intervals in which the function f given by f(x)=4 sin x2xx cos x2+cos x is
increasing

Find the intervals in which the function f given by f(x)=4 sin x2xx cos x2+cos x is
decreasing

Open in App
Solution

Given,f(x)=4 sin x2xx cos x2+cos x=4 sin xx(2+cos x)2+cos x=4 sin x2+cos xx
On differentiating w.r.t.x, we get
f(x)=4{(2+cos x)cos xsin x(0sin x)(2+cos x2)}1=4{2 cos x+cos2 x+sin2x(2+cos x)2}1(cos2x+sin2x=1)=8 cos x+4(2+cos x)21=8 cos x+4(2+cos x)2(2+cos x)2=8 cos x+44cos2x4 cos x(2+cos x)2=4 cos xcos2x(2+cos x)2=8 cos x+44cos2x4 cos x(2+cos x)2=4 cos xcos2x(2+cos x)2=cos x(4cos x)(2+cos x)2
We know that - 1cosx1
4cosx>0and(2+cos x)2>0
(a) For increasing
f'(x) > 0 when cos x > 0 [ cos x is positive in 1st ~ and~ 4th quadrant]
f(x) is increasing in the interval (0,π2) and (3π2,2π).

Given,f(x)=4 sin x2xx cos x2+cos x=4 sin xx(2+cos x)2+cos x=4 sin x2+cos xx
On differentiating w.r.t.x, we get
f(x)=4{(2+cos x)cos xsin x(0sin x)(2+cos x2)}1=4{2 cos x+cos2 x+sin2x(2+cos x)2}1(cos2x+sin2x=1)=8 cos x+4(2+cos x)21=8 cos x+4(2+cos x)2(2+cos x)2=8 cos x+44cos2x4 cos x(2+cos x)2=4 cos xcos2x(2+cos x)2=8 cos x+44cos2x4 cos x(2+cos x)2=4 cos xcos2x(2+cos x)2=cos x(4cos x)(2+cos x)2
We know that - 1cosx1
4cosx>0and(2+cos x)2>0
(b) For decreasing
f'(x) > 0 when cos x < 0
[ cos x is negative in 2nd~ and~ 3rd quadrant]
f(x) is decreasing in the interval (π2,3π2).


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon