Find the intervals in which the function f given by f(x)=4 sin x−2x−x cos x2+cos x is
increasing
Find the intervals in which the function f given by f(x)=4 sin x−2x−x cos x2+cos x is
decreasing
Given,f(x)=4 sin x−2x−x cos x2+cos x=4 sin x−x(2+cos x)2+cos x=4 sin x2+cos x−x
On differentiating w.r.t.x, we get
f′(x)=4{(2+cos x)cos x−sin x(0−sin x)(2+cos x2)}−1=4{2 cos x+cos2 x+sin2x(2+cos x)2}−1(∵cos2x+sin2x=1)=8 cos x+4(2+cos x)2−1=8 cos x+4−(2+cos x)2(2+cos x)2=8 cos x+4−4−cos2x−4 cos x(2+cos x)2=4 cos x−cos2x(2+cos x)2=8 cos x+4−4−cos2x−4 cos x(2+cos x)2=4 cos x−cos2x(2+cos x)2=cos x(4−cos x)(2+cos x)2
We know that - 1≤cosx≤1
⇒4−cosx>0and(2+cos x)2>0
(a) For increasing
f'(x) > 0 when cos x > 0 [∵ cos x is positive in 1st ~ and~ 4th quadrant]
∴f(x) is increasing in the interval (0,π2) and (3π2,2π).
Given,f(x)=4 sin x−2x−x cos x2+cos x=4 sin x−x(2+cos x)2+cos x=4 sin x2+cos x−x
On differentiating w.r.t.x, we get
f′(x)=4{(2+cos x)cos x−sin x(0−sin x)(2+cos x2)}−1=4{2 cos x+cos2 x+sin2x(2+cos x)2}−1(∵cos2x+sin2x=1)=8 cos x+4(2+cos x)2−1=8 cos x+4−(2+cos x)2(2+cos x)2=8 cos x+4−4−cos2x−4 cos x(2+cos x)2=4 cos x−cos2x(2+cos x)2=8 cos x+4−4−cos2x−4 cos x(2+cos x)2=4 cos x−cos2x(2+cos x)2=cos x(4−cos x)(2+cos x)2
We know that - 1≤cosx≤1
⇒4−cosx>0and(2+cos x)2>0
(b) For decreasing
f'(x) > 0 when cos x < 0
[∵ cos x is negative in 2nd~ and~ 3rd quadrant]
∴ f(x) is decreasing in the interval (π2,3π2).