f(x)=sin4x+cos4x, x∈[0,π/2]
f′(x)=4sin3xcosx−4cos3xsinx
=−4sinxcosx(cos2x−sin2x)
=−2sin2x⋅cos2x
=−sin4x
Now, f′(x)=0 gives x=0,π/4
The point x=π/4 divides the interval [0,π/2] into two disjoint intervals [0,π/4) and (π/4,π/2]
When 0≤x<π/4
⇒0≤4x<π
Since, siny is positive in 0 to π.
⇒sin4x>0
⇒−sin4x<0
⇒f′(x)<0
∴f(x) is decreasing on [0,π/4)
When π/4<x≤π/2
⇒π<4x≤2π
Since, siny is negative in π to 2π.
⇒sin4x<0
⇒−sin4x>0
⇒f′(x)>0
∴f(x) is increasing on (π/4,π/2]
x=π/4
for x<π/4, f′(x)<0
for x>π/4, f′(x)>0
⇒x=π/4 is local minima.