wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the intervals in which the function f(x)=4sinx2xxcosx2+cosx is (i) increasing
(ii) decreasing

Open in App
Solution

f(x)=4sinx2xxcosx2+cosx=4sinx2+cosx2x+xcosx2+cosx=4sinx2+cosxx(2+cosx)(2+cosx)=4sinx2+cosxx
Now let's find out f(x)
f(x)=4cosx(2+cosx)+sinx(4sinx)(2+cosx)21=8cosx+4(cos2x+sin2x)(2+cosx)21=8cosx+4(2+cosx)2(2+cosx)2=8cosx+444cosxcos2x(2+cosx)2=cosx(4cosx)(2+cosx)2
Now,(2+cosx)2>0xϵR
Similarly,4cosx>0xϵR
as cosxϵ[1,1]4cosxϵ[3,5]>0
the function f(x) will be increasing if f(x)>0cosx>0 and decreasing if f(x)<0cosx<0
(i) Increasing
f(x)>0cosx>0xϵ(0,π4)(3π4,2π)
(ii) Decreasing
f(x)<0cosx<0xϵ(π4,π)(π,3π2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon