Wehave,f(x)=x44−x3−5x2+24x+12⇒f′(x)=x3−3x2−10x+24⇒f′′(x)=3x2−6x−10Iff′′(x)>0thefunctionisstrictlydecreasingandiff′′(x)<0⇒3x2−6x−10=0⇒x=6±√36+4×3×106=6±√1566=6±12.48996⇒x=3.08or−1.08Wegetthatf′′(x)<0when−1.08<x<3.08andf′′(x)>0whenx>3.08andx<−1.08∴f(x)isstrictlyincreasingwhen−1.08<x<3.08andf(x)isstrictlydecreasingwhenx>3.08andx<−1.08