Letf(x)=2x3−9x2+12x+15f′(x)=6x2−18x+12=6(x2−3x+2)=6(x−1)(x−2)f′(x)=0givesus6(x−1)(x−2)=0⇒x=1,2Thepointsx=1,2dividetherealllineintothreeintervals(−∞,1),(1,2),(2,∞)1.Intheinterval(−∞,1)f′(x)>0∴f(x)isincreasingin(−∞,1)2.Intheinterval(1,2),f′(x)<0∴f(x)isdecreasingin(1,2)3.Intheinterval(2,∞)f′(x)>0∴f(x)isincreasingin(2,∞).