We have,
f(x)=sinx+cosx
Differentiation this with respect to x and we get,
f′(x)=cosx−sinx
When,
f′(x)=0
cosx−sinx=0
cosx=sinx
sinxcosx=1
tanx=1
tanx=tanπ4=tan5π4
x=π4,5π4as0≤x≤2π
The points x=π4and5π4 divides the interval [0,2π] into three disjoint intervals.
(i.e.)[(0,π4),(π4,5π4)and(5π4,2π)]
Now, f′(x)>0ifx∈[(0,π4)∪(5π4,2π)]
Or f(x) is strictly increasing in the intervals [(0,π4)and5π4,2π]
Also, f′(x)<0if x∈(π4,5π4)
Then, f(x) is strictly decreasing in (π4,5π4)
Hence, this is the answer.