Adding and subtracting 1 from the numerator, we get
=L−1{s+1−1(s+1)2+1} Using the property of L−1{f(s)+g(s)}=L−1{f(s)}+L−1{g(s)}
∴L−1{ss2+2s+2}=L−1{s+1(s+1)2+1}−L−1{1(s+1)2+1}......(i) Since, we have L−1{b(s−a)2+b}=eatsinbt Substitute a=−1 and b=1, we get L−1{1(s+1)2+1}=e−tsint.......(ii) Similarly, we have L−1{s−a(s−a)2+b2}=eatcosbt Substitute a=−1 and b=1, we get L−1{s+1(s+1)2+1}=e−tcost.......(iii)
Substitute equation (ii) and (iii) in equation(i),