Find the inverse of A=⎡⎢⎣012123311⎤⎥⎦ if A−1=⎡⎢⎣1/2−1/21/2a3bc−3/21/2⎤⎥⎦ Find |abc|?
Open in App
Solution
Given A=⎡⎢⎣012123311⎤⎥⎦ ∴|A|=0.(2−3)−1(1−9)+2(1+6) =0+8−10 =−2≠0 If C be the matrix of cofactors of the elements in |A| ∴C=⎡⎢⎣C11C12C13C21C22C23C31C32C33⎤⎥⎦ C11=∣∣∣2311∣∣∣=−1;C12=−∣∣∣1331∣∣∣=8;C13=∣∣∣1231∣∣∣=−5 C21=−∣∣∣1211∣∣∣=1;C22=∣∣∣0231∣∣∣=−6;C23=−∣∣∣0131∣∣∣=3 C31=∣∣∣1223∣∣∣=−1;C32=−∣∣∣0213∣∣∣=2;C33=∣∣∣0112∣∣∣=−1 ∴C=⎡⎢⎣−18−51−63−12−1⎤⎥⎦ ∴Adj(A)=C′=⎡⎢⎣−11−18−62−53−1⎤⎥⎦ Hence, A−1=AdjA|A|=−12⎡⎢⎣−11−18−6−2−53−1⎤⎥⎦ =⎡⎢⎣1/2−1/21/2−43−15/2−3/21/2⎤⎥⎦