wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the inverse of matrix by elementary row transformations.
A=121102213

Open in App
Solution

A=121102213
Now, for inverse of A,
A=IA
121102213 = 100010001A
121023213 = 100110001A (R2R1+R2)
121023035 = 100110201A (R3R32R1)
102023035 = 010110201A (R1R1R2)
⎢ ⎢ ⎢1020132035⎥ ⎥ ⎥ = ⎢ ⎢ ⎢01012120201⎥ ⎥ ⎥A (R212R2)
⎢ ⎢ ⎢ ⎢ ⎢10201320012⎥ ⎥ ⎥ ⎥ ⎥ = ⎢ ⎢ ⎢ ⎢ ⎢0101212012321⎥ ⎥ ⎥ ⎥ ⎥A (R3R3+3R2)
⎢ ⎢ ⎢ ⎢ ⎢10001320012⎥ ⎥ ⎥ ⎥ ⎥ = ⎢ ⎢ ⎢ ⎢ ⎢2741212012321⎥ ⎥ ⎥ ⎥ ⎥A (R1R14R3)
⎢ ⎢ ⎢1000100012⎥ ⎥ ⎥ = ⎢ ⎢ ⎢27415312321⎥ ⎥ ⎥A (R2R2+3R3)
100010001 = 274153132A (R32R3)
Hence,
274153132 is the inverse of the given matrix.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Finding Inverse Using Elementary Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon