1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Elementary Transformations
Find the inve...
Question
Find the inverse of the matrix
⎡
⎢
⎣
1
2
1
−
1
0
2
2
1
−
3
⎤
⎥
⎦
by elementary row transformation.
Hence solve the system of equations
x
+
2
y
+
z
=
4
,
−
x
+
2
z
=
0
,
2
x
+
y
−
3
z
=
0
Open in App
Solution
Let
A
=
⎡
⎢
⎣
1
2
1
−
1
0
2
2
1
−
3
⎤
⎥
⎦
A
A
−
1
=
I
⟹
⎡
⎢
⎣
1
2
1
−
1
0
2
2
1
−
3
⎤
⎥
⎦
A
−
1
=
⎡
⎢
⎣
1
0
0
0
1
0
0
0
1
⎤
⎥
⎦
R
2
→
R
2
+
R
1
2
,
R
3
→
R
3
−
2
R
1
⟹
⎡
⎢ ⎢ ⎢
⎣
1
2
1
0
1
3
2
0
−
3
−
5
⎤
⎥ ⎥ ⎥
⎦
A
−
1
=
⎡
⎢ ⎢ ⎢
⎣
1
0
0
1
2
1
2
0
−
2
0
1
⎤
⎥ ⎥ ⎥
⎦
R
1
→
R
1
−
2
R
2
,
R
3
→
R
3
+
3
R
2
⟹
⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣
1
0
−
2
0
1
3
2
0
0
−
1
2
⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦
A
−
1
=
⎡
⎢ ⎢ ⎢ ⎢ ⎢
⎣
0
−
1
0
1
2
1
2
0
−
1
2
3
2
1
⎤
⎥ ⎥ ⎥ ⎥ ⎥
⎦
R
1
→
R
1
−
4
R
3
,
R
2
→
R
2
+
3
R
3
,
R
3
→
−
2
R
3
⟹
⎡
⎢
⎣
1
0
0
0
1
0
0
0
1
⎤
⎥
⎦
A
−
1
=
⎡
⎢
⎣
2
−
7
−
4
−
1
5
0
1
−
3
−
2
⎤
⎥
⎦
⟹
A
−
1
=
⎡
⎢
⎣
2
−
7
−
4
−
1
5
0
1
−
3
−
2
⎤
⎥
⎦
Given equations are
x
+
2
y
+
z
=
4
,
−
x
+
2
z
=
0
,
2
x
+
y
−
3
z
=
0
which can be represented in matrix is as follows
⎡
⎢
⎣
1
2
1
−
1
0
2
2
1
−
3
⎤
⎥
⎦
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
=
⎡
⎢
⎣
4
0
0
⎤
⎥
⎦
⟹
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
=
A
−
1
⎡
⎢
⎣
4
0
0
⎤
⎥
⎦
⟹
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
=
⎡
⎢
⎣
2
−
7
−
4
−
1
5
0
1
−
3
−
2
⎤
⎥
⎦
⎡
⎢
⎣
4
0
0
⎤
⎥
⎦
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
=
⎡
⎢
⎣
8
−
4
4
⎤
⎥
⎦
x
=
8
,
y
=
−
4
,
z
=
4
Suggest Corrections
0
Similar questions
Q.
Find the inverse of matrix by elementary row transformations.
A
=
⎡
⎢
⎣
1
2
1
−
1
0
2
2
1
−
3
⎤
⎥
⎦
Q.
Prove that
∣
∣ ∣ ∣
∣
y
z
−
x
2
z
x
−
y
2
x
y
−
z
2
z
x
−
y
2
x
y
−
z
2
y
z
−
x
2
x
y
−
z
2
y
z
−
x
2
z
x
−
y
2
∣
∣ ∣ ∣
∣
is divisible by
(
x
+
y
+
z
)
, and hence find the quotient
OR
Using elementary transformations, find the inverse of the matrix
A
=
⎛
⎜
⎝
8
4
3
2
1
1
1
2
2
⎞
⎟
⎠
and use it to solve the following system of linear equations:
8
x
+
4
y
+
3
z
=
19
2
x
+
y
+
z
=
5
x
+
2
y
+
2
z
=
7
Q.
Solve the system of equations, using matrix method
2
x
+
3
y
+
3
z
=
5
,
x
−
2
y
+
z
=
−
4
,
3
x
−
y
−
2
z
=
3
Q.
Express the following matrix equation & solve by finding the inverse of coefficient matrix by elementry transformation method.
x
+
y
+
z
=
6
,
x
−
y
+
2
z
=
5
,
2
x
+
y
−
z
=
1
Q.
Using elementary transformation on matrix, solve the system of equations.
2
x
+
3
y
+
10
z
=
4
4
x
−
6
y
+
5
z
=
1
6
x
+
9
y
−
20
z
=
2
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Elementary Transformation of Matrices
MATHEMATICS
Watch in App
Explore more
Elementary Transformations
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app