Find the inverse of the matrix [−325−3]. Hence, find the matrix P satisfying the matrix equation P[−325−3]=[122−1].
Open in App
Solution
Let A=[−325−3]⇒|A|=[−325−3]=9−10=−1,adj.A=[−3−2−5−3] ∴A−1=adj.A|A|=[3253]...(i) Now P[−325−3]=[122−1]⇒P=[122−1][−325−3]−1 (On post-multiplication with A−1. By (i), we get : P=[122−1][3253]∴P=[3+102+66−54−3]=[13811]