|A|=0−1(1−2)+3(3−4)=1−2=−2≠ 0.
Hence matrix A is non-singular.
Co-factors of the 1st, 2nd and 3rd rows of | A | are
-1, 8, -5; 1, -6, 3; -1, 2,-1
Therefore the matrix formed by co-of factors |A| is
C = ⎡⎢
⎢⎣−18−51−63−12−1⎤⎥
⎥⎦
∴ Adj. A = Transpose of C
∴ Adj. A = ⎡⎢
⎢⎣−11−18−62−53−1⎤⎥
⎥⎦
∴ A−1=1|A|Adj. A=−12⎡⎢
⎢⎣−11−18−62−53−1⎤⎥
⎥⎦
Multiply each element of the matrix by −12
or A−1=⎡⎢
⎢
⎢
⎢
⎢
⎢⎣12−1212−43−152−3212⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Verification : A.A−1=A−1A=1
⎡⎢
⎢⎣−11−18−62−53−1⎤⎥
⎥⎦×12⎡⎢
⎢⎣−11−18−62−53−1⎤⎥
⎥⎦
= −12⎡⎢
⎢⎣−2000−2000−2⎤⎥
⎥⎦=⎡⎢
⎢⎣100010001⎤⎥
⎥⎦=I3