wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Find the latus rectum, the eccentricity, and the coordinates of the foci, of the ellipses
(1) x2+3y2=a2, (2) 5x2+4y2=1, and (3) 9x2+5y230y=0.

Open in App
Solution

(1) x2+3y2=a2

x2a2+y2(a23)=1

Latus rectum=2b2a=2×a23a=2a3

e2=1b2a2=1a23a2=113=23e=23=136

Coordinates of foci are (±ae,0)

(±a36,0)


(2) 5x2+4y2=1

x2(15)2+y2(12)2=1a=15,b=12b>a

So the major axis of ellipse is y axis

Latus rectum =2a2b=2×1512=45

e2=1a2b2=11514=145=15e=15

Foci : (0,±be)

(0,±125)


(3) 9x2+5y230y=0

9x2+5(y26y+99)=09x2+5(y3)2=45x25+(y3)29=1a=5,b=3b>a

So, the major axis of ellipse is y axis.

Latus rectum =2a2b=2×53=103

e2=1a2b2=159=49e=23

For (xh)2a2+(yk)2b2=1 with b>a

Foci is (h,±be+k)

Here h=0 and k=3

So foci are (0,3×23+3)=(0,5) and (0,3×23+3)=(0,1)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ellipse and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon