(1) x2+3y2=a2
x2a2+y2(a23)=1
Latus rectum=2b2a=2×a23a=2a3
e2=1−b2a2=1−a23a2=1−13=23⇒e=√23=13√6
Coordinates of foci are (±ae,0)
(±a3√6,0)
(2) 5x2+4y2=1
x2(1√5)2+y2(12)2=1a=1√5,b=12b>a
So the major axis of ellipse is y axis
Latus rectum =2a2b=2×1512=45
e2=1−a2b2=1−1514=1−45=15⇒e=1√5
Foci : (0,±be)
⇒(0,±12√5)
(3) 9x2+5y2−30y=0
9x2+5(y2−6y+9−9)=09x2+5(y−3)2=45x25+(y−3)29=1a=√5,b=3b>a
So, the major axis of ellipse is y axis.
Latus rectum =2a2b=2×53=103
e2=1−a2b2=1−59=49⇒e=23
For (x−h)2a2+(y−k)2b2=1 with b>a
Foci is (h,±be+k)
Here h=0 and k=3
So foci are (0,3×23+3)=(0,5) and (0,−3×23+3)=(0,1)