1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
LCM of Polynomials
Find the LCM ...
Question
Find the LCM of
6
(
x
2
+
2
x
y
−
3
y
2
)
,
4
(
x
2
−
3
x
y
+
2
y
2
)
,
8
(
x
2
+
x
y
−
6
y
2
)
Open in App
Solution
We know that
L
C
M
is the least common multiple.
Factorise
6
(
x
2
+
2
x
y
−
3
y
2
)
as follows:
6
(
x
2
+
2
x
y
−
3
y
2
)
=
6
(
x
2
+
3
x
y
−
x
y
−
3
y
2
)
=
6
[
x
(
x
+
3
y
)
−
y
(
x
+
3
y
)
]
=
(
2
×
3
)
(
x
−
y
)
(
x
+
3
y
)
Now,
factorise
4
(
x
2
−
3
x
y
+
2
y
2
)
as follows:
4
(
x
2
−
3
x
y
+
2
y
2
)
=
4
(
x
2
−
2
x
y
−
x
y
+
2
y
2
)
=
4
[
x
(
x
−
2
y
)
−
y
(
x
−
2
y
)
]
=
(
2
×
2
)
(
x
−
y
)
(
x
−
2
y
)
Finally,
factorise
8
(
x
2
+
x
y
−
6
y
2
)
as follows:
8
(
x
2
+
x
y
−
6
y
2
)
=
8
(
x
2
+
3
x
y
−
2
x
y
−
6
y
2
)
=
8
[
x
(
x
+
3
y
)
−
2
y
(
x
+
3
y
)
]
=
(
2
×
2
×
2
)
(
x
−
2
y
)
(
x
+
3
y
)
Therefore, the least common multiple between the polynomials
6
(
x
2
+
2
x
y
−
3
y
2
)
,
4
(
x
2
−
3
x
y
+
2
y
2
)
and
8
(
x
2
+
x
y
−
6
y
2
)
is:
⇒
L
C
M
=
2
×
2
×
2
×
3
(
x
−
y
)
×
(
x
+
3
y
)
×
(
x
−
2
y
)
=
24
(
x
−
y
)
(
x
+
3
y
)
(
x
−
2
y
)
Hence, the
L
C
M
is
24
(
x
−
y
)
(
x
+
3
y
)
(
x
−
2
y
)
.
Suggest Corrections
0
Similar questions
Q.
The LCM of
6
(
x
2
+
x
y
)
,
8
(
x
y
−
y
2
)
,
12
(
x
2
−
y
2
)
a
n
d
20
(
x
+
y
)
2
is
Q.
Let
A
=
3
y
2
+
9
x
−
3
x
2
,
B
=
6
x
2
−
2
y
2
+
3
x
,
C
=
9
x
2
−
3
x
y
−
y
2
.
Find A + B - C.
Q.
Solve:
(
2
x
y
−
x
y
)
(
3
x
y
−
5
)
Q.
Mark the correct alternative in the following question:
What should be added to xy + yz + zx to get
-
xy
-
yz
-
zx?
(a)
-
2xy
-
2yz
-
2zx (b)
-
3xy
-
yz
-
zx (c)
-
3xy
-
3yz
-
3zx (d) 2xy + 2yz + 2zx
Q.
The irreducible factors of 2xy+6
y
2
are ___, ____, ____
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Lowest Common Multiple
MATHEMATICS
Watch in App
Explore more
LCM of Polynomials
Standard X Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app