Find the LCM of polynomials p(x)=x3−1, q(x)=x3+1 and r(x)=(x2+1)2−x2.
Open in App
Solution
We observe p(x)=x3−1=x3−13. Factoring using a3−b3=(a−b)(a2+ab+b2), we get p(x)=(x−1)(x2+x+1) Similarly, q(x)=x3+1=x3+13=(x+1)(x2−x+1); we have used a3+b3=(a+b)(a2−ab+b2). Finally r(x)=(x2+1)2−x2=(x2+x+1)(x2−x+1).