Find the least positive angle measured in degrees satisfying the equation : sin3x+sin32x+sin33x=(sinx+sin2x+sin3x)3.
A
72∘
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
36∘
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
54∘
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A72∘ Given, sin3x+sin32x+sin33x=(sinx+sin2x+sin3x)3⇒−3(sinx+sin2x)(sinx+sin3x)(sin2x+sin3x)=0 ⇒(sinx+sin2x)=0 or (sinx+sin3x)=0 or (sin2x+sin3x)=0
Then (sinx+sin2x)=0⇒sinx+2sinxcosx=0⇒sinx(1+2cosx)=0 ⇒x=nπ,2π3+2nπ,4π3+2nπ (sinx+sin3x)=0⇒4sinx−4sin3x=0⇒sinx(sinx−1)(sinx+1)=0 ⇒x=π2+2nπ,2nπ−π2,nπ
(sin2x+sin3x)=0 Put y=tanx2
6y(y2+1)3−20y3(y2+1)3+6y5(y2+1)3+4y(y2+1)2−4y2(y2+1)2=0 ⇒2(y5−10y3+5y)(y2+1)3=0⇒y(y4−10y2+5)=0 ⇒y=0 or (y4−10y2+5)=0
Solving this ⇒x=2nπ,4π5+2nπ,2nπ−4π5,2π5+2nπ Hence x=2nπ,2nπ+π,23(3nπ−π),23(3nπ+π),12(4nπ−π)