Find the least value of a such that the function f given by f(x)=x2+ax+1 is strictly increasing on (1,2).
Given, f(x)=x2+ax+1⇒f′(x)=2x+a
In interval (1,2), 1<x<2⇒2<2x<4⇒(2+a)<(2x+a)<(4+a)
Since, f(x) is strictly increasing function, then (2+a)>0 [For this f′(x)>0 and (2x+a)>(2+a)]
∴(2+a)>0⇒a>−2. Hence, the least value of a=-2