wiz-icon
MyQuestionIcon
MyQuestionIcon
8
You visited us 8 times! Enjoying our articles? Unlock Full Access!
Question

Find the least value of secA+secB+secC in acute angle triangle

Open in App
Solution

In a acute angle triangle, secA, secB and secC are positive.
Now A.M.H.M.
secA+secB+secC33cosA+cosB+cosC
Let cosA+cosB+cosC=x
2cos(A+B2)cos(AB2)+12sin2C2=x
2sinC2cos(AB2)+12sin2C2=x
2sin2C22sinC2cos(AB2)+x1=0
This is quadratic in sinC/2 which is real. So, discriminant D0
4cos2(AB2)4×2(x1)0
2(x1)cos2(AB2)
2(x1)1
x3/2
Thus, cosA+cosB+cosC32
secA+secB+secC32
secA+secB+secC6
Leat value=6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon