Find the left and right hand limits of f(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩3x2+23x−2x<14x2−34x+3x>1 at x=1
Solve :
(i) 13x−6=52(ii) 2x3−3x8=712(iii) (x+2)(x+3)+(x−3)(x−2)−2x(x+1)=0(iv) 110−7x=35(v) 13(x−4)−3(x−9)−4(x+4)=0(vi) x+7−8x3=17x6−5x8(vii) 3x−24−2x+33=23−x(viii) x+26−(11−x3−14)=3x−412(ix) 25x−53x=115(x) x+23−x+15=x−34−1(xi) 3x−23+2x+32=x+76(xii) x−x−12=1−x−23(xiii) 9x+72−(x−x−27)=36(xiv) 6x+12+1=7x−33
Question 2 Which of the following is not a quadratic equation? (a) 2(x−1)2=4x2−2x+1 (b) 2x−x2=x2+5 (c) (√2x+√3)2=3x2−5x (d) (x2+2x)2=x4+3+4x3