Let the foot of perpendicular from the point P to the given plane 2x+4y−z=2 be Q(a,b,c). So,
−−→PQ=(a−7)^i+(b−14)^j+(c−5)^k
The normal vector of the given plane is,
→N=2^i+4^j−^k
As −−→PQ∥→N, so,
a−72=b−144=c−5−1=λ
a=2λ+7
b=4λ+14
c=−λ+5
Since Q(a,b,c) lies on the given plane, so,
2a+4b−c=2
2(2λ+7)+4(4λ+14)−(−λ+5)=2
λ=−3
The coordinates of the foot of the perpendicular is Q((2(−3)+7),(4(−3)+14),(−(−3)+5))=Q(1,2,8).The length of the perpendicular is,
PQ=√(7−1)2+(14−2)2+(5−8)2
=√189
=3√21