Find the length of altitude AD of an isosceles ΔABC in which AB = AC = 2a units and BC = a units.
In an isosceles triangle
AB = AC = 2a units
BC= a units
Given BC = a. Then, BD=a2
In ΔABD,
∠ADB=90o
(AB)2=(AD)2+(BD)2 [by Pythagoras thorem]
(AD)2=(AB2−BD2)
=[(2a)2−(a2)2] sq.unit = (4a2−a24) sq.unit
AD2=16a2−a24
AD=√15a24 unit.
AD=a √152 unit