Find the length of direct common tangent for circles x2 + y2 − 20x + 64 = 0 and x2 + y2 + 30x + 144 = 0
2√154
Given circles
x2+y2−20x+64=0 - - - - - - (1)
x2+y2+30x+144=0 - - - - - - (2)
Let the circle be c1&c2 and radii r1&r2 of circle (1) and (2) respectively.
c1(10, 0) c2(−15,0)
c1c2=√(25)2+0=25
r1=√g2+f2−c=√100+0+64=6
r2=√g2+f2−c=√225+0−144=9
c1c2>r1+r2
Both the circle neither touch nor intersect to each other.
Length of direct common tangent
=√d2−(r1−r2)2
=√(25)2−(6−9)2
=√625−9=√616=2√154
Length of direct common tangent = 2√154units