Find the length of the chord of contact of the tangents drawn from the point (3, 2) to the hyperbola x2−9y2=9.
Equation of the chord of contact of the tangents drawn from the point (3, 2) to the hyperbola
T=0
3x−9×2y=9
x-6y=3 .........(1)
inter-section point of chord of contact x-6y=3 & hyperpola x2−9y2=9 is
(3+6y)2−9y2=9
(1+2y)2−y2=1
1+4y2+4y−y2=1
y(3y+4)=0
y=0 & y=−43
When y=0,x=3
when y=−43,x=6(−43)+3=−5
point of intersection of chord of contact & hyperpola is
(3,0) & (−5,−43)
Length of the chord of contact=√(−43−0)2+(−5−3)2
=√169+64
=√16+5769