Given the curve 4y2=x3
Differentiating with respect to x,
8ydydx=3x2
⇒dydx=3x28y
⇒√1+(dydx)2=√1+9x464y2
=√1+9x416×4y2
=√1+9x416x3=√1+9x16
The curve is symmetrical about x-axis.
Length of the curve =2∫10√1+(dydx)2dx
=2∫10√1+9x16dx
=2×⎡⎢
⎢
⎢
⎢
⎢⎣(1+9x16)3/2916×32⎤⎥
⎥
⎥
⎥
⎥⎦10=6427[(1+9x16)3/2]10
=6427[(1+916)3/2−1]=6427[(2516)3/2−1]
=6427[12564−1]=6427[125−6464]
=6427[6164]=6127