wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the length of the curve: (xa)2/3+(yb)2/3=1.

Open in App
Solution


Lengthofacurveyf(x)fromatobis

L=bx=a1+(dydx)2dx

Given

(xa)2/3+(yb)2/3=1

L=4×lengthofcurvefromx=0toa

L=4×l

l=a01+(dydx)2dx

(yb)2/3=1(xa)2/3

yb=[1(xa)2/3]3/2

y=b[1(xa)2/3]3/2

dydx=b×32[1(xa)2/3]1/2[23(xa)1/3][1a]

dydx=ba(xa)1/3[1(xa)2/3]1/2

(dydx)2=b2a2(xa)2/3[1(xa)2/3]

(dydx)2=b2a2[(xa)2/31]

l=a01+b2a2[(xa)2/31]dx

letsassume a=b

l=a01+(xa)2/31dx

l=a0(xa)1/3dx

l=[3a2(xa)2/3]a0

l=3a2

L=4×l

L=4×3a2

L=6a


1461503_1259069_ans_242ae46aab544a35ab337df01b726b0f.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and a Point
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon