Find the length of the hypotenuse of the right triangle whose vertices are given by the points (−2,1),(1,1) and (1,2)
Let the points be A(−2,1), B(1,1) and C(1,2)
Given: △ABC is right-angled.
By distance formula,,
d(A,B)=√(1+2)2+(1−1)2=√9=3
d(A,C)=√(1+2)2+(2−1)2=√10
d(B,C)=√(1−1)2+(2−1)2=√1=1
Hence, the longest side i.e. hypotenuse of the right angled △ABC is AC=√10 units.