When axes are inclined at an angle ω , the perpendicular distance of a point P(h,k) from ax+by+c=0 is
p=ah+bk+c√a2+b2−2abcosωsinω
Here P is (4,−3) and line is 6x+3y−10=0
p=6(4)+3(−3)−10√42+(−3)2−2(4)(−3)cos60∘sin60∘p=24−9−10√16+9+−2(4)(−3)(12)√32p=5√37×√32p=52√337