Given:
Point: P(2,−3,1)
Line: x+12=y−33=z+2−1=λ (say)
Any point on this line will be
2λ−1,3λ+3,−λ−2
Let Q(2λ−1,3λ+3,−λ−2) be the foot of perpendicular
Directional ratio of perpendicular →PQ is (2λ−1−2,3λ+3−(−3),−λ−2−1)
⇒(2λ−3,3λ+6,−λ−3)
Since →PQ is perpendicular to the given line
(2,−3,1).(−−→PQ)=0(2λ−3)2+(3λ+6)3−1(−λ−3)=0λ=−1514
Point Q((−3014−1),(3(−1514)+3),(−(−1514)−2))
Q(−4414,−314,−1314)⇒√(−44−2814)2+(−3+4214)2+(−13−1414)2⇒8614≈6