Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α ,a sin α) and (a cos β, a sin β)
Line formed from joining (a cos α, a sin α) and (a cos β, a sin β)
⇒y−α sin β
=a sin β−a sin αa cos β−a cos α×x−a cos β
y−α sin β
=2 sin(β−α2) cos(β+α2)−2 sin(β−α2) sin(β+α2)×(x−a) cos β
⇒y−α sin β=−cot(β+α2)(x−a cos β)
⇒y+cot(β+α2)x−a cos β cot(β+α2)
−a sin β=0
Then, the length of perpendicular
⇒∣∣ ∣ ∣∣0(y)+0−a cos β cot(β+α2)−a sin β√1+cot2(α+β2)∣∣ ∣ ∣∣
⇒a cos β cot(α+β2)+a sin βcosec(α+β2)
⇒a cos β cos(α+β2)+a sin β(α+β2)
⇒a cos(α−β2)
[Using cos A cos B+sin A sin B=cos(A−B)]
Hence, proved.