wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α ,a sin α) and (a cos β, a sin β)

Open in App
Solution

Line formed from joining (a cos α, a sin α) and (a cos β, a sin β)

yα sin β

=a sin βa sin αa cos βa cos α×xa cos β

yα sin β

=2 sin(βα2) cos(β+α2)2 sin(βα2) sin(β+α2)×(xa) cos β

yα sin β=cot(β+α2)(xa cos β)

y+cot(β+α2)xa cos β cot(β+α2)

a sin β=0

Then, the length of perpendicular

∣ ∣ ∣0(y)+0a cos β cot(β+α2)a sin β1+cot2(α+β2)∣ ∣ ∣

a cos β cot(α+β2)+a sin βcosec(α+β2)

a cos β cos(α+β2)+a sin β(α+β2)

a cos(αβ2)

[Using cos A cos B+sin A sin B=cos(AB)]

Hence, proved.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and a Point
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon