wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin β).

Open in App
Solution

Equation of the line passing through (acosα, asinα) and (acosβ, asinβ) is

y-asinα=asinβ-asinαacosβ-acosαx-acosαy-asinα=sinβ-sinαcosβ-cosαx-acosαy-asinα=2cosβ+α2sinβ-α22sinβ+α2sinα-β2x-acosαy-asinα=-cotβ+α2x-acosαy-asinα=-cotα+β2x-acosα

xcotα+β2+y-asinα-acosα cotα+β2=0

The distance of the line from the origin is

d=-asinα-acosα cotα+β2cot2α+β2+1d=asinα+acosα cotα+β2cosec2α+β2 cosec2θ=1+cot2θ

d=asinα+β2sinα+cosα cosα+β2 d=asinα sinα+β2+cosα cosα+β2 d=acosα+β2-α =acosβ-α2=acosα-β2

Hence, the required distance is acosα-β2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon