Given the two lines, 2x−3y+14=0⟶(1)5x+5y−7=0⟶(2)
Solving these lines we have,
x21−70=y70+14=110+15⇒x−49=y84=125⇒x=−4925,y=8425
So, (−4925,8425) is the point of intersection of the lines (1) and (2).
∴ The equation of the line passing through the origin and the point (−4925,8425) is,
y−0=8425−0−4925−0(x−0)⇒y=−8449x⇒y=−127x⇒12x+7y=0
∴ Length of the perpendicular from the point (4,−7) to the line 12x+7y=0 is,
∣∣
∣∣12(4)+7(−7)√122+72∣∣
∣∣=∣∣
∣∣48−49√122+72∣∣
∣∣=∣∣∣−1√193∣∣∣=1193 units.