wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the lengths of, and the equations to, the focal radii drawn to the point (43,5) of the ellipse 25x2+16y2=1600.

Open in App
Solution

25x2+16y2=160025x21600+16y21600=1x264+(y)2100=1a=8,b=10b>a

So the major axis of ellipise is y axis.

e2=1a2b2=164100=36100e=610

Foci of the ellipse are (0,±be)

(0,±10×610)(0,±6)

S(0,6) and S(0,6)

Given point on ellipse is P(43,5)

Equation of PS

y6=56430(x0)x+43y243=0x+43y=243

Focal radii PS=(430)2+(56)2=48+1=7

Equation of PS

y(6)=5(6)430(x0)43y+243=11x11x43y243=0

Focal radii =(430)2+(5(6))2=48+121=13


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ellipse and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon