Find the lengths of the axes; the coordinates of the vertices and the foci; the eccentricity and length of the latus rectum of the hyperbola 9x2−16y2=144.
9x2−16y2=144 ⇒ x216−y29=1.
Thus, the euqation of the given hyperbola is x216−y29=1.
Comparing the given equation with x2a2−y2b2=1,
we get a2=16 and b2=9.
∴ a=4, b=3 and c=√a2+b2=√16+9=√25=5.
(i) Length of the transverse axis = 2a=(2×4) units = 8 units.
(ii) The coordinates of the vertices are A(−a, 0) and B(a, 0), i.e., A(−4, 0) and B(4, 0).
(iii) The coordinates of the foci are F1(−c, 0) and F2(c, 0), i.e., F1(−5, 0) and F2(5, 0).
(iv) Ecentricity, e=ca=54.
(v) Length of the latus rectum = 2b2a=(2×94) units = 92 units.