Find the lengths of the axes; the coordinates of the vertices and the foci the eccentricity and length of the latus rectum of the hyperbola y2−16x2=16.
y2−16x2=16 ⇒ y216−x21=1.
Clearly, the given equation represents a vertical hyperbola.
Comparing the given equation with y2a2−x2b2=1,
we get (a2=16 and b2=1) ⇒ (a=4 and b=1).
∴ c=√a2+b2=√16+1=√17.
(i) Length of the transverse axis = 2a=(2×4) units = 8 units.
Length of the conjugate axis = 2b=(2×1) units = 2 units.
(ii) The coordinates of the vertices are A(0, −a) and B(0, a), i.e., A(0, 4) and B(0, 4).
(iii) The coordinates of the foci are F1(0, −c) and F2(0, c), i.e., F1(0, −√17) and F2(0, √17).
(iv) Eccentricity, e=ca=√174.
(v) Length of the latus rectum = 2b2a=(2×14) unit = 12 unit.