Find the lengths of the medians of a △ABC whose vertices are A(0,-1), B(2,1) and C(0, 3)
Let D be the midpoint of BC. So, the coordinates of D are
D=(2+0)2,(1+3)2.
⇒D=22,42
D=(1,2)
Let E be the midpoint of AC. So, the coordinates of E are
E=(0+0)2,(−1+3)2
E=(02,22
= E(0,1)
Let F be the midpoint of AB. So, the coordinates of F are
F=(0+2)2,(−1+1)2
F=22,02
= F(1,0)
AD=√(1−0)2+(2−(−1))2
AD=(1)2+(3)2
AD=√1+9
AD=√10 units
BE=√(0−2)2+(1−1)2
BE=√(−2)2+(0)2
BE=√4+0
BE= 2 units
CF=√(1−0)2+(0−3)2
CF=√(1)2+(−3)2
CF=√1+9
CF=√10 units
Therefore, the lengths of the medians:AD=√10 units,BE=2 units,CF=√10 units