limy→01+1+y4-2y4=
142
122
122(1+2)
Does not exist.
Simplifying the given function, we get.
limy→01+1+y4-2y4=limy→01+1+y4-2y4×1+1+y4+21+1+y4+2=limy→01+y4-1y41+1+y4+2=limy→01+y4-1y41+1+y4+2×1+y4+11+y4+1=limy→0y4(y41+1+y4+2)(1+y4+1)=limy→011+1+y4+21+y4+1=142
Therefore, Option (A) is the correct answer.