Sum of the squares of natural numbers = S2
S2=12+22+32+42+....+n2
S2=n(n+1)(2n+1)6
Sum of natural numbers = S1
S1=1+2+3+4+....+n
S1=n(n+1)2
Hence,
⇒limn→∞[n(n+1)2]2n×[n(n+1)(2n+1)6]
⇒limn→∞n2(n+1)24n×n(n+1)(2n+1)6
⇒limn→∞32(n+1)(2n+1)
⇒limn→∞32(1+1n2+1n)
⇒34=0.75