wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the limits of a2+ax+x2a2ax+x2a+xax, when x=0.

Open in App
Solution

To find the limits of L=a2+ax+x2a2ax+x2a+xax when x=0
Using Rationalisation, we get

L=limx0a2+ax+x2a2ax+x2a+xax×a2+ax+x2+a2ax+x2a2+x2+ax+a2ax+x2
=limx0(a2+ax+x2)(a2ax+x2)(a+xax)×(a2+ax+x2+a2ax+x2)

=limx02ax(a+xax)×(a2+ax+x2+a2ax+x2)


Again using rationalisation, we get

L=limx02ax(a+xax)×(a2+ax+x2+a2ax+x2)×a+x+axa+x+ax

=limx02ax×(a+x+ax)(2x)×(a2+ax+x2+a2ax+x2)

=limx0a×(a+x+ax)(a2+ax+x2+a2ax+x2)

=a×(a+0+a0)(a2+a(0)+02+a2a(0)+02)

=a×2a2a
=a

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon