wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the local maxima and local minima, if any of the following functions. Also, find the local maximum and the local minimum values, as the case may be as follows.
f(x)=x2

g(x)=x33x

h(x)=sinx+cosx,0<x<π2

f(x)=sinxcosx,0<x<2π

f(x)=x36x2+9x+15

g(x)=x2+2x,x>0

g(x)=1x2+2

f(x)=x1x,x>0

Open in App
Solution

Given function is, f(x)=x2
Differentiating w.r.t. x, f'(x)=2x~ and ~again differentiating w.r.t x, we get f"(x)=2
for maxima or minima, put f'(x)=0
2x=0x=0
Thus, x=0 is the only critical point which could be possibly the point of local maxima or local minima of f.
We have f"(0)=2>0 (which is positive)
Therefore, by second derivative test, x=0 is a point of local minima and local minimum value of f at x=0 is f(0)=x2=02=0

Given function is, g(x)=x33x
g(x)=3x23 and g′′(x)=6x
For maxima or minima put g'(x)=0
3x23=0x=±1
Thus, we expect extremum only at two points -1 and 1
At x=1,g"(1)=6(1)=6<0
g has a local maxima at x=-1 and local maximum value = g(-1)
=(1)33(1)=1+3=2
At x=1,g"(1)=6×1=6>0
g has a local minima at x=1 and local minimum value =g(1)
=(1)33(1)=13=2
At x=1,g"(1)=6×1=6>0
Therefore g has a local minima at x=1 and local minimum value = g(1)
=133×1=2

Given function is, h(x)=sinx+cosx,0<x<π2
h(x)=cosxsinx and h"(x)=sinxcosx
For maxima or minima put h'(x)=0
sinx=cosxsinxcosx=1tanx=1x=π4ϵ(0,π2)
At x=π4,h"(π4)=sinπ4cosπ4=sinπ4cosπ4=1212=22=2<0
Therefore, by second derivative test x=π4 is a point of local maxima and the local maximum value of h at x=π4 is
h(π4)=sinπ4+cosπ4=12+12=22=2

Given function is, f(x)=sinxcosx, 0<x<2π
f(x)=cosx+sinx and f"(x)=sinx+cosx
For maxima put f'(x)=0
cosx+sinx=0sinxcosx=1,i.e. tanx=1x=ππ4,2ππ4x=3π4,7π4,xϵ(2,2π)
The points at which extremum may occur are 3π4 and 7π4
At x=π4,f"(3π4)=sin3π4+cos3π4=sin(ππ4)+cos(ππ4)
[sin(πθ)=sinθ and cos(πθ)=cosθ]
=sinπ4cosπ4=1212=2<0
x=3π4 is a point of maxima.
Maxima value =f(3π4)=sin3π4cos3π4
=sin(ππ4)cos(ππ4)=sinπ4cosπ4=12+12=22=2
At x=7π4,f"(7π4)+cos7π4=sin(2ππ4)+cos(2ππ4)
[sin(2πθ)=sinθ and cos(2πθ)=cosθ]=sinπ4+cosπ4=12+12=2>0
x=7π4 is a point of minima.
Minimum value
f(7π4)=sin7π4cos7π4=sin(2ππ4)cos(2ππ4)=sinπ4cosπ4=1212=2

Given functions is f(x)=x36x2+9x+15
f(x)=3x212x+9andf"(x)=6x12
For maxima or minima put f'(x)=0
3x212x+9=03(x24x+3)=03(x23xx+3)=03[x(x3)1(x3)]=03(x1)(x3=0x=1 or x=3
At x=1f"(1)=6×112=612=6<0
x=1 is a point of maxima.
Maximum value =f(1)=(1)36(1)2+9(1)+15=16+9+15=19
At x=3,f"(3)=6×312=1812=6>0
x=3 is a point of minima
Minimum value =f(3)=336×32+9×3+15=2754+27+15=15

Given function is g(x)=x2+2x,x>0
g(x)=12+2(1x2)=122x2 and g"(x)=2(2)x3=4x3
For maxima or minima put, g'(x)=0
122x2=012=2x22=4x=2,2 [x>0 (given)]
At x=2, g"(2)=423=48=12>0
x=2 is a point of minima.
Minimum value, g(2)=22+22=1+1=2

Given function is g(x)=1x2+2
Now, g(x)=(x2+2)1g(x)=(x2+2)11×2x=2x(x2+2)2g"(x)=(x2+2)2.(2)(2x).2(x2+2).2x(x2+2)4=2(x2+2)2+8x2(x2+2)(x2+2)4=(x2+2)[2x24+8x2](x2+2)4=6x24(x2+2)3=2(3x22)(x2+2)3
For maxima or minima put g(x)=02x(x2+2)2=02x=0x=0
At x=0, g"(0)=2[3(0)22][(0)2+2]3=48=12<0
x=0 is a point of maxima. Maximum value, g(0)=1(0)2+2=12

Given function is f(x)=x1x
f(x)=x(1)21x+1x=x+2(1x)21x=23x21xf"(x)=121x(3)(23x)(121x)(1x)=1x(3)(23x)(121x)2(1x)=6(1x)+(23x)4(1x)32=3x44(1x)32
For maxima or minima put f'(x)=0
23x21x=023x=0x=23At x=23,f"(23)=3(23)44(123)32=244(13)32=12(13)32<0
x=23 is a point of maxima.
Maximum value =f(23)=23123=23×13=233=239


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon