Find the local maxima and local minima, if any of the following functions. Also, find the local maximum and the local minimum values, as the case may be as follows.
f(x)=x2
g(x)=x3−3x
h(x)=sinx+cosx,0<x<π2
f(x)=sinx−cosx,0<x<2π
f(x)=x3−6x2+9x+15
g(x)=x2+2x,x>0
g(x)=1x2+2
f(x)=x√1−x,x>0
Given function is, f(x)=x2
∴ Differentiating w.r.t. x, f'(x)=2x~ and ~again differentiating w.r.t x, we get f"(x)=2
for maxima or minima, put f'(x)=0
∴ 2x=0⇒x=0
Thus, x=0 is the only critical point which could be possibly the point of local maxima or local minima of f.
We have f"(0)=2>0 (which is positive)
Therefore, by second derivative test, x=0 is a point of local minima and local minimum value of f at x=0 is f(0)=x2=02=0
Given function is, g(x)=x3−3x
∴ g′(x)=3x2−3 and g′′(x)=6x
For maxima or minima put g'(x)=0
∴ 3x2−3=0⇒x=±1
Thus, we expect extremum only at two points -1 and 1
At x=−1,g"(−1)=6(−1)=−6<0
∴ g has a local maxima at x=-1 and local maximum value = g(-1)
=(−1)3−3(−1)=−1+3=2
At x=1,g"(1)=6×1=6>0
∴ g has a local minima at x=1 and local minimum value =g(1)
=(1)3−3(1)=1−3=−2
At x=1,g"(1)=6×1=6>0
Therefore g has a local minima at x=1 and local minimum value = g(1)
=13−3×1=−2
Given function is, h(x)=sinx+cosx,0<x<π2
∴h′(x)=cosx−sinx and h"(x)=−sinx−cosx
For maxima or minima put h'(x)=0
⇒sinx=cosx⇒sinxcosx=1⇒tanx=1⇒x=π4ϵ(0,π2)
At x=π4,h"(π4)=−sinπ4−cosπ4=−sinπ4−cosπ4=−1√2−1√2=−2√2=−√2<0
Therefore, by second derivative test x=π4 is a point of local maxima and the local maximum value of h at x=π4 is
h(π4)=sinπ4+cosπ4=1√2+1√2=2√2=√2
Given function is, f(x)=sinx−cosx, 0<x<2π
∴f′(x)=cosx+sinx and f"(x)=sinx+cosx
For maxima put f'(x)=0
⇒cosx+sinx=0⇒sinxcosx=−1,i.e. tanx=−1⇒x=π−π4,2π−π4⇒x=3π4,7π4,xϵ(2,2π)
∴ The points at which extremum may occur are 3π4 and 7π4
At x=π4,f"(3π4)=−sin3π4+cos3π4=−sin(π−π4)+cos(π−π4)
[∵sin(π−θ)=sinθ and cos(π−θ)=−cosθ]
=−sinπ4−cosπ4=−1√2−1√2=−√2<0
∴x=3π4 is a point of maxima.
Maxima value =f(3π4)=sin3π4−cos3π4
=sin(π−π4)−cos(π−π4)=sinπ4−cosπ4=1√2+1√2=2√2=√2
At x=7π4,f"(7π4)+cos7π4=−sin(2π−π4)+cos(2π−π4)
[∵sin(2π−θ)=−sinθ and cos(2π−θ)=cosθ]=sinπ4+cosπ4=1√2+1√2=√2>0
∴x=7π4 is a point of minima.
Minimum value
f(7π4)=sin7π4−cos7π4=sin(2π−π4)−cos(2π−π4)=−sinπ4−cosπ4=−1√2−1√2=−√2
Given functions is f(x)=x3−6x2+9x+15
⇒f′(x)=3x2−12x+9andf"(x)=6x−12
For maxima or minima put f'(x)=0
⇒3x2−12x+9=0⇒3(x2−4x+3)=0⇒3(x2−3x−x+3)=0⇒3[x(x−3)−1(x−3)]=0⇒3(x−1)(x−3=0⇒x=1 or x=3
At x=1f"(1)=6×1−12=6−12=−6<0
∴ x=1 is a point of maxima.
Maximum value =f(1)=(1)3−6(1)2+9(1)+15=1−6+9+15=19
At x=3,f"(3)=6×3−12=18−12=6>0
x=3 is a point of minima
∴ Minimum value =f(3)=33−6×32+9×3+15=27−54+27+15=15
Given function is g(x)=x2+2x,x>0
⇒g′(x)=12+2(−1x2)=12−2x2 and g"(x)=−2(−2)x−3=4x3
For maxima or minima put, g'(x)=0
⇒12−2x2=0⇒12=2x2⇒2=4⇒x=2,−2 [∵x>0 (given)]
At x=2, g"(2)=423=48=12>0
∴x=2 is a point of minima.
Minimum value, g(2)=22+22=1+1=2
Given function is g(x)=1x2+2
Now, g(x)=(x2+2)−1⇒g′(x)=−(x2+2)−1−1×2x=−2x(x2+2)2g"(x)=(x2+2)2.(−2)−(−2x).2(x2+2).2x(x2+2)4=−2(x2+2)2+8x2(x2+2)(x2+2)4=(x2+2)[−2x2−4+8x2](x2+2)4=6x2−4(x2+2)3=2(3x2−2)(x2+2)3
For maxima or minima put g′(x)=0⇒−2x(x2+2)2=0⇒−2x=0⇒x=0
At x=0, g"(0)=2[3(0)2−2][(0)2+2]3=−48=−12<0
∴x=0 is a point of maxima. Maximum value, g(0)=1(0)2+2=12
Given function is f(x)=x√1−x
⇒f′(x)=x(−1)2√1−x+√1−x=−x+2(1−x)2√1−x=2−3x2√1−xf"(x)=12⎡⎢⎣√1−x(−3)−(2−3x)(−12√1−x)(1−x)⎤⎥⎦=√1−x(−3)−(2−3x)(−12√1−x)2(1−x)=−6(1−x)+(2−3x)4(1−x)32=3x−44(1−x)32
For maxima or minima put f'(x)=0
2−3x2√1−x=0⇒2−3x=0⇒x=23At x=23,f"(23)=3(23)−44(1−23)32=2−44(13)32=−12(13)32<0
∴x=23 is a point of maxima.
Maximum value =f(23)=23√1−23=23×√13=23√3=2√39