Find the local maxima and local minima, if any, of the following functions. Find the sum of the local maximum and the local minimum values for: g(x)=x3−3x
Open in App
Solution
g′(x)=3x2−3=3(x−1)(x+1)=0⇒x=−1,1
g′′(x)=6x⇒g′′(−1)=6∗−1=−6
Hence Local Maximum is at x=−1
and Local minimum is at x=1
Local Maximum + Local Minimum =g(−1)+g(1)=(−1+3)+(1−3)=0