f(x)=(x2−7x+6x−10)f′(x)=((2x−7)(x−10)−(x2−7x+6)×1(x−10))forcriticalpoints(2x−7)(x−10)−(x2−7x+6)=02x2−20x−7x+70−x2+7x−6=0x2−20x+64=0x2−16x−4x+64=0x(x−16)−4(x−16)=0(x−4)(x−16)=0∴x=4,16∴localmaximaatx=4andf(4)=(3×(−2)(−6))=1andlocalminimaatx=16andf(16)=(15×106)=25