Find the local minimum and maximum values of f(x)=x4−3x3+3x2−x.
Open in App
Solution
Given, f(x)=x4−3x3+3x2−x Thus, f′(x)=4x3−9x2+6x−1 At a turning point, f′(x)=0 gives 4x3−9x2+6x−1=0 (x−1)2(4x−1)=0⇒x=1,1,14 When x=1,f(1)=0 and when x=14 f(14)=−27256 Hence, the coordinates of the stationary points are (1,0) and (14,−27256) f"(x)=12x2−18x+6 =6(2x2−3x+1) =6(x−1)(2x−1) x=1,f"(1)=0
Thus the second derivative test gives no information about the extremum nature of f at x=1. When x=14,f"(14)=94>0.