Let the point O be (h,k)
Equation of normal in slope form is
y=mx−2am−am3
It passes through O(h,k)
am3+(2a−h)m+k=0
This is cubic in m
∴m1+m2+m3=−0a=0........(i)m1m2+m2m3+m3m1=2a−ha.........(ii)m1m2m3=−ka...........(iii)
The feet of normal are (am21,−2am1),(am22,−2am2),(am23,−2am3)
Given line joining any two is in a given direction
−2am2−(−2am1)am22−am21=c2a(m1−m2)a(m2+m1)(m2−m1)=cm2+m1=−2cm1+m2+m3=0−2c+m3=0⇒m3=2cm1m2m3=−kam1m22c=−ka⇒m1m2=−kc2am1m2+m2m3+m3m1=2a−ha−kc2a+m3(m2+m1)=2a−ha−kc2a+2c(−2c)=2a−ha−kc2a−4c2=2a−ha−kc3−8a2ac2=2a−ha−kc3−8a=4ac2−2c2h2c2h−kc3=4ac2+8a
Replacing h by x and k by y
2c2x−yc3=4ac2+8a , where c is a constant
This represents a straight line.