Three normals can be drawn whose slopes are$ {m}_{1},{m}_{2} and {m}_{3}
For cubic ⇒m1+m2+m3=0m1m2+m2m3+m3m1=(2a−ha)m1m2m3=−ka
The equation o normal y2=4axi.e,y=mx−2am−am3
It passesthrough the point (h,t) if
K=mh−2am−am3am2+m(2a−h)+k=0⟶(1)
Let the roots be m1,m2andm3.The perpendicular normals.Correspond to the values of m1,m2
from the eqn,m1m2m3=−ka
Sincem3
⟹(Ka)3+Ka(2a−h)+K=0⟹K2+a(2a−h)+a2=0∴K2=a(h−3a)
∴ Locus of (h,k) is y2=a(x−3a)