The equation of normal to the parabola is given by y=mx−2am−am3Three normals pass through the point (h,k)
Substituting (h,k) into the equation, we have am3+m(2a−h)+k=0 with roots m1,m2,m3
Since one normal bisects the angle between the other two, we can write m3−m21+m3m2=m2−m11+m1m2
⇒m3−m2+m1m2m3−m1m22=m2−m1+m3m22−m1m2m3
⇒m3+m1−2m2+2m1m2m3−m22(m1+m3)=0
Also, m1m2m3=−ka and m1+m2=−m3
⇒−3m2+−2ka+m32=0
Substituting m32 into the equation, we get
3am2+2k+m2(2a−h)+k=0
⇒3k+(5a−h)m2=0
i.e. m2=3kh−5a
i.e. (3kh−5a)3−9kh−5a−2ka=0
⇒27ak2−9a(h−5a)2−2(h−5a)3=0
⇒27ak2−9ah2−225a3+90a2h−2h3+30ah2−150ha2+250a3=0
⇒27ay2+21ax2−60a2x−2x3+25a3=0