Let the point O be (h,k)
Equation of normal in slope form is
y=mx−2am−am3
It passes through O(h,k)
am3+(2a−h)m+k=0
This is cubic in m
∴m1+m2+m3=−0a=0m1m2+m2m3+m3m1=2a−ham1m2m3=−ka
Let θ1,θ2,θ3 be the angles made by them with the axis of the parabola
Given θ1+θ2+θ3=constant
tan(θ1+θ2,+θ3)=tan(constamt)tanθ1+tanθ2+tanθ3−tanθ1tanθ2tanθ31−tanθ1tanθ2−tanθ2tanθ3−tanθ3tanθ1=ctanθ1+tanθ2+tanθ3−tanθ1tanθ2tanθ31−(tanθ1tanθ2+tanθ2tanθ3+tanθ3tanθ1)=c0−(−ka)1−2a−ha=ckh−a=ck=hc−ac
Reeplacing h by x and k by y
y=cx−ac where c is a constant
represents a straight line.