Find the locus of a point such that the line segments having end points(2,0) and (-2,0) subtend a right angle at that point.
Let P(h,k) be the variable point and letA(2,0) and B(-2,0)be the given points,Then,∠APB=π/2⇒AB2=PA2+PB2⇒(2+2)2+0=(2−h)2+(0−k)2+(−2−h)2+(0−k)2⇒16=4+h2−4h+k2+4+h2+4h+k2⇒16+2h2+2h2+2k2+8⇒2h2+2k2+8−16=0⇒2h2+2k2−8=0⇒h2+k2−4=0Hence,the locus of(h,k) is x2+y2=4.