The correct option is A 24x2+25y2+25z2−600=0
Let the points A(1,0,0),B(−1,0,0) and P(x,y,z).
Given PA+PB=0
√(x−1)2+(y−0)2+(z−0)2+√(x+1)2+(y−0)2+(z−0)2=10
⇒√(x−1)2+y2+z2=10−√(x+1)2+y2+z2
Squaring on both sides, we get
(x−1)2+y2+z2=100+(x+1)2+y2+z2−20√(x+1)2+y2+z2
⇒−4x−100=−20√(x+1)2+y2+z2
⇒x+25=5√(x+1)2+y2+z2
Again squaring on both sides, we get
x2+50x+625=25{(x2+2x+1)+y2+z2}
⇒24x2+25y2+25z2−600=0
i.e., required equation of locus.