Let the moving or variable point be P(x,y) and the given points be A(4,3) and B(4,1)
By the conditions of the problem,
PA+PB=5
PA=5−PB
⇒√(x−4)2+(y−3)2=5−√(x−4)2+(y−1)2
⇒(x−4)2+(y−3)2=25+(x−4)2+(y−1)2−10√(x−4)2+(y−1)2
⇒y2−6y+9=25+y2−2y+1−10√(x−4)2+(y−1)2
⇒10√(x−4)2+(y−1)2=4y+17
Squaring both sides again
100(x2−8x+16+y2−2y+1)=(4y+17)2
⇒100(x2+y2−8x−2y+17)=16y2+136y+284
⇒100x2+100y2−16y2−800x−200y−136y+1700−284=0
100x2+84y2−800x−336y+1411=0