Let the point be P(h,k) and two perpendicular fixed straight lines be
ax+by+c=0.......(i)bx−ay+d=0........(ii)
and the third fixed straight line be
Ax+By+C=0........(iii)
Perpendicular distance from P to (i) is
p1=ah+bk+c√a2+b2
From (ii)
p2=bh−ak+d√b2+a2
From (iii)
p3=Ah+Bk+C√A2+B2
Given p1−p2=p3
ah+bk+c√a2+b2−bh−ak+d√b2+a2=Ah+Bk+C√A2+B2ah+bk+c−bh+ak−d√a2+b2=Ah+Bk+C√A2+B2(a−b)h+(a+b)k+(c−d)√a2+b2=Ah+Bk+C√A2+B2√A2+B2(a−b)h+√A2+B2(a+b)k+√A2+B2(c−d)=A√a2+b2h+B√a2+b2k+C√a2+b2
Replacing h by x and k by y
(√A2+B2(a−b)−A√a2+b2)x+(√A2+B2(a+b)−B√a2+b2)y+√A2+B2(c−d)−C√a2+b2=0Dx+Ey+F=0
which is also a straight line . So the locus of P is a straight line